TUGAS: Exploiting unlabelled data for Twitter sentiment analysis

نویسندگان

  • Silvio Amir
  • Miguel B. Almeida
  • Bruno Martins
  • João Filgueiras
  • Mário J. Silva
چکیده

This paper describes our participation in the message polarity classification task of SemEval 2014. We focused on exploiting unlabeled data to improve accuracy, combining features leveraging word representations with other, more common features, based on word tokens or lexicons. We analyse the contribution of the different features, concluding that unlabeled data yields significant improvements.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Text Analytics of Customers on Twitter: Brand Sentiments in Customer Support

Brand community interactions and online customer support have become major platforms of brand sentiment strengthening and loyalty creation. Rapid brand responses to each customer request though inbound tweets in twitter and taking proper actions to cover the needs of customers are the key elements of positive brand sentiment creation and product or service initiative management in the realm of ...

متن کامل

2016 Olympic Games on Twitter: Sentiment Analysis of Sports Fans Tweets using Big Data Framework

Big data analytics is one of the most important subjects in computer science. Today, due to the increasing expansion of Web technology, a large amount of data is available to researchers. Extracting information from these data is one of the requirements for many organizations and business centers. In recent years, the massive amount of Twitter's social networking data has become a platform for ...

متن کامل

A High-Performance Model based on Ensembles for Twitter Sentiment Classification

Background and Objectives: Twitter Sentiment Classification is one of the most popular fields in information retrieval and text mining. Millions of people of the world intensity use social networks like Twitter. It supports users to publish tweets to tell what they are thinking about topics. There are numerous web sites built on the Internet presenting Twitter. The user can enter a sentiment ta...

متن کامل

Forecasting Stock Price Movements Based on Opinion Mining and Sentiment Analysis: An Application of Support Vector Machine and Twitter Data

Today, social networks are fast and dynamic communication intermediaries that are a vital business tool. This study aims at examining the views of those involved with Facebook stocks so that we can summarize their views to predict the general behavior of this stock and collectively consider possible Facebook stock price movements, and create a more accurate pattern compared to previous patterns...

متن کامل

Sentiment in Social Media: Bootstrapping Subjectivity Clues from Multilingual Twitter Streams and Exploiting Gender Language Differences on Twitter

We study subjective language in social media and create Twitter-specific lexicons via bootstrapping sentiment-bearing terms from multilingual Twitter streams. Starting with a domain-independent, highprecision sentiment lexicon and a large pool of unlabeled data, we bootstrap Twitter-specific sentiment lexicons, using a small amount of labeled data to guide the process. Our experiments on Englis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014